Грозозащита, защита от импульсных перенапряжений и помех
HAKEL Россия

АО "Хакель Рос", Санкт-Петербург
ул. Бабушкина, д. 36, к. 1, лит. "И"

(вход с Фарфоровской ул.)

Тел.: 8 (800) 333-28-29
СПб: +7 (812) 244-59-15
Мск: +7 (495) 984-00-66

Заказать обратный звонок

Продукция
Уcтройства защиты от импульсных перенапряжений и помех
УЗИП электрооборудования распределительных сетей до 1000 ВУЗИП электрооборудования распределительных сетей до 1000 В

УЗИП систем передачи данных, управления, контроля и измеренияУЗИП систем передачи данных, управления, контроля и измерения

УЗИП телекоммуникационного оборудованияУЗИП телекоммуникационного оборудования

УЗИП оборудования локальных вычислительных сетей (ЛВС)УЗИП оборудования локальных вычислительных сетей (ЛВС)

УЗИП цифровых интерфейсовУЗИП цифровых интерфейсов

Искровые разделительные разрядникиИскровые разделительные разрядники

Щитки защиты от импульсных перенапряжений ЩЗИП
Оборудование для тестирования и измерений УЗИП
Приборы для контроля изоляции в сетях с изолированной нейтралью
Устройства промышленной автоматики
Устройства заземляющие комплектные УЗК
Устройства молниезащитные комплектные УМК









Пример: УЗИП, разрядник




Технические бюллетени


Технический бюллетень TNP033 04.12.2018 г. Часть I. Внешняя молниезащита служебно-технических зданий и сооружений ОАО «РЖД»


Внешняя молниезащита служебно-технических зданий и сооружений ОАО «РЖД»
Часть I.
Внешняя молниезащита (ВМЗ) служебно-технических зданий и сооружений ОАО «РЖД» должна выполняться в соответствии с государственными стандартами:
  •    серией стандартов ГОСТ Р МЭК 62305 «Менеджмент риска. Защита от молнии»;
  •    серией стандартов ГОСТ Р МЭК 62561 «Компоненты систем молниезащиты»;
  •    инструкциями РД 34.21.122-87 «Инструкция по устройству молниезащиты зданий и сооружений» и СО 153-34.21.122-2003 «Инструкция по устройству молниезащиты зданий, сооружений и промышленных коммуникаций».
А так же отраслевыми нормативными документами:
  •  СТО РЖД 08.026-2015 «Устройства железнодорожной инфраструктуры. Защита от атмосферных и коммутационных перенапряжений. Устройства молниезащиты и заземления технических средств. Технические требования»;
  •  СП 234.13260000.2015 «Свод правил. Железнодорожная автоматика телемеханика. Правила строительства и монтажа»;
  • СП 235.13260000.2015 «Свод правил. Железнодорожная автоматика телемеханика. Правила проектирования».
Система внешней молниезащиты должна обеспечивать защиту от прямых ударов молнии защищаемых зданий, сооружений, технических средств, технологического оборудования, а также обслуживающего персонала с заданной надежностью. Система внешней молниезащиты, совместно с системой заземления технических средств железнодорожной инфраструктуры и устройствами защиты от перенапряжений, также должна минимизировать влияние вторичных проявлений молниевых разрядов на защищаемое оборудование.

Создание специальной системы внешней молниезащиты зданий и сооружений необходимо в тех случаях, когда защита зданий/сооружений не обеспечена естественными молниеприемниками или внешней системой молниезащиты других сооружений, например, элементами контактной сети, и других сооружений, указанных в 5.2.4 [1].
 
В [1] введено такое понятие, как нежелательное событие.
Применительно к системе ВМЗ их два:
  • появление тока молнии, на который не рассчитана система внешней МЗ;
  • прорыв молнии через систему внешней МЗ.
Взаимосвязь между нежелательными событиями и эффективностью ВМЗ представлена на Рис. 1.
 
 
Рисунок 1 - Взаимосвязь между нежелательными событиями и эффективностью ВМЗ

Оба эти нежелательных события имеют ненулевую вероятность появления, поэтому любая система ВМЗ не будет иметь 100% надёжность защиты.

Система внешней молниезащиты должна обеспечивать защиту от прямых ударов молнии с заданной надежностью. Для этого необходимо произвести расчёт надёжности проектируемой системы ВМЗ.

В случае, если расчётные параметры тока молнии находятся в заданном диапазоне и расчётное количество прорывов молнии через систему ВМЗ не превышает допустимое принято считать, что система ВМЗ рассчитана с заданной надежностью. Упрощённый алгоритм расчёт надёжности ВМЗ представлен на рис. 2.
 
 
Рисунок 2 - Алгоритм расчёта надёжности ВМЗ

Исходными данными для расчёта надёжности ВМЗ являются:
  •  плотность ударов молнии в землю в заданном районе (Th);
  •  коэффициент местоположения (Cd);
  •  срок эксплуатации объекта (tэкспл);
  •  допустимое число прорывов молнии за срок эксплуатации (Nпр);
  •  конфигурация и геометрические размеры объекта (длина L, ширина W, высота H).

Плотность ударов молнии в землю в заданном районе (Ng) определяется по формуле:
                                                                      (1)
            где Th – среднегодовая продолжительность гроз в часах, определяется по региональным картам интенсивности грозовой деятельности, либо по средним многолетним (не менее 10 лет) данным метеостанции, самой близкой к месту расположения объекта. При отсутствии точной информации по грозовой активности в конкретном регионе, можно воспользоваться картой грозовой активности (рис. 3).
 
 
Рисунок 3 - Карта грозовой активности
 
Коэффициент местоположения (Cd) определяется местоположением объекта относительно окружающих его объектов согласно таблице 1. Для более точных расчетов допускается применять промежуточные значения.

Таблица 1 - Коэффициенты местоположения
 

Относительное местоположение

СD

Объект окружен более высокими объектами, и их площадь сбора разрядов полностью закрывает площадь сбора разрядов рассматриваемого объекта, но при этом окружающие объекты не обеспечивают защиту объекта от ударов молнии с заданной надежностью

0,25

Объект окружен другими объектами сравнимой высоты, и их площадь сбора разрядов закрывает не менее половины площади сбора разрядов рассматриваемого объекта

0,5

Объект окружен другими объектами значительно меньшей высоты (рассматриваемый объект более чем в 5 раз выше окружающих объектов) либо в площади сбора разрядов рассматриваемого объекта отсутствуют другие объекты

1

Объект находится на возвышенности и в площади сбора разрядов рассматриваемого объекта отсутствуют другие объекты

2

 
Срок эксплуатации защищаемого объекта (tэкспл) определяется техническим заданием (ТЗ) на проектирование.

Допустимое число прорывов молнии за срок эксплуатации (Nпр) определяется характеристиками защищаемого объекта, опасностью последствий прямого удара молнии в него для людей и окружающей среды.

Надёжность защиты (Pз) следует выбирать из ряда 0,9; 0,99; 0,999, что условно можно соотнести с III, II и I уровнем молниезащиты соответственно. 0 означает отсутствие молниезащиты.

Тогда ожидаемая вероятность прорыва молнии к объекту (P) определяется формулой:
                                                                                           (2)
Максимально (Imax) и минимально (Imin) допустимые значения тока молнии для выбранной надёжности защиты, а также вероятности выхода за этот диапазон (Pmax; Pmin) определяются по Таблице 2 [1].
 
Таблица 2 - Значения параметров импульса молнии, соответствующих LPL

Параметр

Уровень защиты от молнии LPL

I

II

III

IV

(Imax) Максимальное значение тока молнии, кА

200

150

100

100

(Imin) Минимальное значение тока молнии, кА

3

5

10

16

(1 - Pmax) Вероятность того, что ток молнии будет больше минимального значения (надежность защиты)

0,99

0,97

0,91

0,84

(1 - Pmin) Вероятность того, что ток молнии будет меньше максимального значения

0,99

0,98

0,95

0,95

 
На следующем этапе определяется площадь сбора молниевых разрядов (Sсб) физический принцип которой заключается в том, что возвышающийся объект принимает на себя разряды, которые в его отсутствии поразили бы поверхность земли определенной площади (так называемую площадь сбора). Площадь стягивания представляет собой область, образуемую на поверхности земли основаниями конусов с вершинами в самых высоких точках здания/сооружения, с высотами, перпендикулярными поверхности земли и радиусами основания, равными трем высотам (рис. 4).
 
 
Рисунок 4 - Площадь стягивания изолированного прямоугольного здания (сооружения)
 
Для прямоугольного здания Sсб, м2, определяют по следующей формуле:
                                                                   (3)
          где L, W, H – длина, ширина и высота объекта соответственно.
 
Для сосредоточенного объекта, такого как, например, мачта, площадь стягивания определяют по следующей формуле:
                                                                                       (4)
          где H – высота объекта.

Рассчитанная площадь стягивания Sсб позволяет нам определить ожидаемое число ударов молнии в год в объект (Nd) по формуле:
                                                                               (5)
          где:
              - Ng – плотность ударов молнии в землю на км2 в год;
              - Sсб – площадь стягивания молнии;
              - Cd – коэффициент положения объекта относительно окружающих объектов.
 
Зная срок эксплуатации объекта, определяем количество прорывов молнии через МЗС за весь срок эксплуатации (NΣ) по формуле:
                                                                                               (6)
      где:
          - P – ожидаемая вероятность прорыва молнии;
          - Nd – ожидаемое число ударов молнии в год в объект;
          - tэкспл – срок эксплуатации объекта.
 
Значение NΣ не должно превышать допустимое число прорывов молнии (Nпр) определённое в ТЗ.
 
Так как помимо допустимого количества прорывов молнии в объект есть ещё нежелательное событие, о котором говорилось выше – это возможный выход за пределы расчётных значений амплитуды тока молнии для выбранного уровня защиты, необходимо также учесть и эту вероятность.
 
Время, за которое ожидается одно превышение тока молнии над максимальным значением (Tmax), т.е за сколько лет произойдёт одно превышение, вычисляется по формуле:
                                                                               (7)
  где:
         - Pmax – вероятность превышения максимального значения тока (Imax);
         - Nd – ожидаемое число ударов молнии в год в объект.

Время, за которое ожидается один выход за нижний порог амплитуды тока молнии (Tmin), т.е за сколько лет произойдёт один выход , вычисляется по формуле:
                                                                           (8)
   где:
        - Pmin – вероятность выхода за минимальное значения тока (Imin);
        - Nd – ожидаемое число ударов молнии в год в объект.

Оба расчётных значения (Tmax; Tmin) не должны быть меньше срока эксплуатации объекта (tэкспл).
В случае если одно из значений (NΣ; Tmax; Tmin) выходит за допустимые границы, необходимо повысить надёжность защиты (Pз) на один уровень и произвести повторный расчёт. Повышать уровень надёжности и выполнять повторные расчёты необходимо до тех пока расчётные параметры тока молнии не будут находиться в заданном диапазоне и расчётное количество прорывов молнии через систему ВМЗ не превышает допустимого.

Если при имеющихся исходных данных (геометрические размеры объекта, коэффициент местоположения, срок эксплуатации объекта, допустимое число прорывов молнии к объекту за срок эксплуатации), невозможно достичь заданной эффективности МЗ только повышением уровня надёжности защиты (Pз), необходимо внести поправки в исходные данные. Например, уменьшив высоту объекта или разместив его в окружение более высоких объектов можно снизить ожидаемое число ударов молнии (Nd) и, как следствие, повысить эффективность МЗ.
После определения надежности защиты, необходимо определить конфигурацию зон внешней молниезащиты и выбрать тип молниеприемников (таблица 2).

Таблица 3 - Типы молниеприёмников

Тип молниеприёмника

Зоны защиты

Надёжность защиты

Одиночный стержневой

0,9 – 0,999

Одиночный тросовый


0,9 – 0,999

Двойной равновысокий стержневой


0,9 – 0,999

Двойной разновысокий стержневой


0,9 – 0,999

Двойной тросовый


0,9 – 0,999

Молниеприёмная сетка


0,9 – 10х10м

0,99 – 5х5м


Молниеприемники могут быть стержневые, тросовые или выполненные в виде молниеприемной сетки на крыше здания/сооружения. Для комплекса зданий/сооружений, связанных едиными технологическими задачами, допускается применять все типы молниеприемников как по отдельности, так и в любой комбинации.
Молниезащиту с помощью стержневых и тросовых молниеприемников допускается применять в любых случаях. Правила построения зон молниезащиты стержневыми и тросовыми молниеприемниками для надежности защиты 0,9, 0,99 и 0,999 приведены в Приложении А [1]. Допускается построение зон защиты в соответствии с методом катящейся (фиктивной) сферы, описанным в IEC 62305-3.
Молниеприемники в виде молниезащитной сетки допускается применять при размещении сеток на крышах зданий/сооружений в случае если надежность защиты определена не выше 0,99. Шаг ячейки молниезащитной сетки выбирают, согласно Таблице 3.

В случае плоской крыши молниезащитную сетку необходимо выполнить таким образом, чтобы периметр сетки проходил по периметру крыши здания/сооружения, а шаг был не больше принятого, согласно таблице 3, значения.

В случае не плоской крыши, наличии на крыше коньков, выступов и т.п., элементы молниезащитной сетки должны быть обязательно проложены как по периметру крыши, так и по конькам и выступам. При этом размер ячеек сетки не должен быть больше принятого, согласно таблице 3, значения.

Элементы внешней системы молниезащиты могут быть размещены как отдельно от защищаемого объекта (изолированные элементы системы молниезащиты), так и непосредственно на нем (неизолированные элементы системы молниезащиты), как, например, в случае размещенной на крыше здания/сооружения молниеприемной сетки или антенны, выполняющей функции молниеприемника. Выбор места размещения и типа элементов системы внешней молниезащиты следует определять исходя из необходимости минимизации затрат при обеспечении требуемого уровня защиты от первичных и вторичных проявлений молнии. На существующих и реконструируемых объектах при определении зон защиты следует учитывать уже установленные, существующие элементы и/или конструкции в качестве элементов внешней молниезащиты, например, мачты радиосвязи, элементы контактной сети и т.п.
В качестве естественного молниеприёмника может быть использована металлическая кровля, в случае если выполнены следующие условия:
  • все элементы кровли надежно электрически связаны друг с другом, т.е. удовлетворяют требованиям, приведенным в 7.1.4 [1];
  • кровля не покрыта изолирующим материалом;
  • толщина кровли не меньше значения tl, приведенного в Таблице 4, если нет необходимости защиты кровли от повреждения или прожига и под кровлей не располагаются горючие материалы;
  • толщина кровли не меньше значения t, приведенного в таблице 4, если необходима защита кровли от повреждений или прожога, или под кровлей размещаются горючие материалы.
Таблица 4 - Требования к толщине естественных молниеприёмников
 

Материал

Толщина t, мм

Толщина tl, мм

Сталь оцинкованная или нержавеющая

4

0,5

Медь

5

0,5

Алюминий

7

0,65

 
В случае применения металлических молниеотводов количество токоотводов не регламентируется. В случае применения железобетонных, деревянных мачт необходимо наличие не менее одного токоотвода. При применении тросовых молниеотводов на каждой опоре троса должно быть установлено не менее одного токоотвода.
 
В случае если внешняя система молниезащиты неизолированная, т.е. расположена на защищаемом объекте, и выполнена сосредоточенным молниеприемников, количество токоотводов должно быть не менее двух.
 
Расположение токоотводов в этом случае должно быть симметричным относительно молниеприемника. Для молниеприемной сетки или металлической крыши, используемой в качестве молниеприемной сетки, минимальное количество токоотводов должно быть не менее четырех. Токоотводы должны быть равномерно расположены по периметру здания, в том числе по его углам. Расстояние между токоотводами не должно превышать двойной размер стороны ячейки молниезащитной сетки, определяемый согласно таблице 3: при размере сетки 5х5 метров - не более 10 метров, при размере 10х10 метров - не более 20 метров. В случае размещения на защищаемом объекте, как сосредоточенного молниеприемника, так и молниеотводной сетки, молниеотвод должен быть соединен с сеткой по кратчайшему пути с помощью не менее чем двух проводников. Токоотводы необходимо соединять с заземлителем, выполненным по 6.2.2 [1], по кратчайшему пути.
 
Металлические кровли служебно-технических зданий/сооружений (включая транспортабельные модули), находящихся частично или полностью в зоне А по [2], должны иметь дополнительно по два заземляющих проводника, каждый из которых включается на тяговый рельс или среднюю точку дроссель-трансформаторов через защитный искровой промежуток или диодный заземлитель. Диодный заземлитель предназначен для применения только на участках с электротягой постоянного тока.
 
Не рекомендуется прокладка токоотводов в виде петель. Не следует прокладывать токоотводы в водосточных трубах. Рекомендуется размещать токоотводы на максимально возможных расстояниях от дверей и окон.
Для зданий/сооружений высотой более 20 метров токоотводы следует соединять наружными горизонтальными полосами, не более чем через каждые 20 метров по высоте здания.

Минимально допустимые сечения элементов молниеприемников и токоотводов внешней системы молниезащиты приведены в таблице 5. В случае если молниеприемники могут быть подвержены механическим воздействиям, например, ветровым нагрузкам и т.п., их минимальный размер должен быть увеличен на основании соответствующих расчетов. Требования к материалу и минимальному сечению заземляющих проводников элементов системы молниезащиты приведены в разделе 6.6 [1].
 


                                                                                                                                                   
АО "Хакель Рос"

т/ф: +7 (812) 244-59-15
т/ф: +7 (495) 984-00-66


e-mail: info@hakel.ru
www.hakel.ru

Новости | О компании | Услуги | Информация | Где купить | Контакт